Review of Probability Theory

- Measurements of random events may be made in either continuous or discrete time.
- Examples are, height, number of heads when a coin is tossed 10 times.
- * Random variables are characterized by a probability density function (probability mass function for discrete random variables), g(x), which have the property that $\int_{-\infty}^{\infty} g(x) dx = 1$, or $\sum_{i=a}^{i=b} g(x_i) = 1$, where x_i takes on values, x_a , ..., x_b .
- * Examples: uniform distribution on (0,2), g(x)=0.5, $\int_0^2 0.5 dx = 0.5x \Big[\frac{2}{0} = 0.5(2-0) = 1$

Review of Probability Theory (cont.)

- * Binomial distribution, $g(x) = \binom{n}{x} p^x (1-p)^{n-x}$, where $\binom{n}{x} = \frac{n!}{x! (n-x)!}$
- * mean=np and variance=np(1-p)
- * Example, with n=2, p=0.6,

$$\sum_{x=0}^{x=2} {2 \choose x} 0.6^{x} (1 - 0.6)^{2-x} = 1 \cdot 0.6^{0} \cdot 0.4^{2} + 2 \cdot 0.6^{1} \cdot 0.4^{1} + 1 \cdot 0.6^{2} \cdot 0.4^{0}$$
$$= 0.16 + 0.48 + 0.36 = 1$$

Expectation

- * The expected value of a function, f(x), of a random variable is, $E[f(x)] = \int_{-\infty}^{\infty} f(x)g(x)dx$ or $E[f(x)] = \sum_{i=a}^{i=b} f(x_i)g(x_i)$
- * Example, let f(x)=x, then using the previous examples, Uniform: $\int_0^2 0.5x dx = 0.5 \cdot 0.5x^2 \Big[_0^2 = 0.25(4-0) = 1$ Binomial: $0.16 \cdot 0 + 0.48 \cdot 1 + 0.36 \cdot 2 = 0 + 0.48 + 0.72 = 1.2$
- * The mean of a random variable can be defined as, E[x], and the variance, $E[(x-E(x))^2]$.
- Cov(xy)= E{[x-E(x)][y-E(y)]}

Expectation and Variance

- \bullet E[cx]=cE[x], where c is a constant
- \star E[k+cx]=k+cE[x], where k and c are constants
- \star Var(c)=0
- ❖ $Var(cx)=c^2Var(x)$ -> prove this by using the deinfinition of variance, $E[(x-E(x))^2]$
- Show that, $Var(x) = E(x^2) E(x)^2$ and Cov(xy) = E(xy) E(x)E(y)
- Var(x+y)=Var(x)+Var(y)+2Cov(xy) -> prove by using the definition of variance

Conditional Expectation and Probability

- For discrete random variable
- $\bullet \quad \mathsf{E}[Y] = \sum_{over \, x} E[Y|X = x]g(x) = E[E[Y|X = x]]$
- ❖ If X and Y are independent, E[Y|X=x]=E[Y]
- $\bullet E[f(X,Y)|X=x] = E[f(x,Y)|X=x]$
- $\star Var[Y] = E[Var(Y|X)] + Var[E(Y|X)]$

Conditional Mean and Variance: Example

* Example: Suppose we have many vials with fruit flies. The number of females in a vial (N) is a random variable with a binomial distribution, $\sim B(\widetilde{N},p)$, where \widetilde{N} is the total number (constant) of flies placed in a vial. Suppose the number of eggs laid by each female (X) has a Poisson distribution, with parameter λ (mean and variance $=\lambda$). Then the total number of eggs laid in a vial is, $Y=X_1+X_2+...+X_N$.

*
$$E[Y|N=n]=nE[X]-> E[Y]=E[X]\sum_{j=0}^{\widetilde{N}}j\binom{\widetilde{N}}{j}p^{j}(1-p)^{\widetilde{N}-j}=E[X]\widetilde{N}p=\lambda\widetilde{N}p$$

Conditional Mean and Variance: Example (cont.)

* Var(Y)=E[Var(Y)|N=n]+Var(E[Y|N=n])=E[nVar(X)]+Var(nE(X)),since $Var(Y)|N=n = Var[X_1+X_2+...+X_n]=nVar(X)$ and $E[Y|N=n]=E[X_1+X_2+...+X_n]=nE(X)$

 $Var(Y)=E(N)Var(X)+E(X)^{2}Var(N),$ since Var(X) and E(X) are constants

$$Var(Y) = \widetilde{N}p\lambda + \lambda^2 p(1-p)\widetilde{N}$$

* If $\tilde{N} = 100$, p = 0.5, $\lambda = 10$, then E[Y] = 500, and Var(Y) = 3,000 an approximate 95% confidence interval is $2 \cdot \sqrt{3000} = 110$

Taylor Series

- * The value of a function near a point x^* can be approximated with the Taylor Series.
- * For the function f(x) let $f^{(n)}(x^*)$ be the *nth* derivative evaluated at the point x^* , then

$$f(x) = f(x^*) + \frac{(x - x^*)}{1!} f^{(1)}(x^*) + \dots + \frac{(x - x^*)^n}{n!} f^{(n)}(x^*)$$

* Example: exponential function at $x^*=0$,

$$e^x \cong 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$$

- If we just use the first two terms, $e^{0.1} \cong 1.1$, while the true answer is 1.105.
- * If x is far from x^* then the approximation will be poor. So $e^5 \cong 6$, while the true value is 148.

Delta Method

- The delta method is a way of approximating the variance of complicated functions.
- * M, which is a complicated function of k parameters, c_1 , c_2 , ..., c_k , e. g. $M = F(c_1, c_2, ..., c_k)$.
- * The parameters are estimated as, $\hat{c}_1, \hat{c}_2, ..., \hat{c}_k$. Then, $\widehat{M} \cong F(\hat{c}_1, \hat{c}_2, ..., \hat{c}_k)$.
- * The delta method uses a Taylor series expansion around $E(c_i)$ which in practice will be estimated by \hat{c}_i .

$$\widehat{M} \cong F[E(c_1), E(c_2), \dots, E(c_k)] + (c_1 - E(c_1)) \frac{dF}{dc_1} |_{c_1 = E(c_1)} + \dots + (c_k - E(c_k)) \frac{dF}{dc_k} |_{c_k = E(c_k)}$$

• Then noting that $Var(\hat{M}) = E\left[\left(\hat{M} - F\left[E(c_1), \dots, E(c_k)\right]\right)^2\right]$

$$\sum_{i} Var(\hat{c}_{i}) \left(\frac{dF}{dc_{i}}\right)^{2} + \sum_{i} \sum_{j \neq i} Cov(\hat{c}_{i}, \hat{c}_{j}) \frac{dF}{dc_{i}} \frac{dF}{dc_{j}}$$

Delta method: example

- Let X and Y be independent random variable with means, μ_X and μ_Y and variances σ_X^2 , and σ_Y^2 .
- Find Var(X/Y)
- $\frac{\partial \left(\frac{X}{Y}\right)}{\partial X} = \frac{1}{Y}, \text{ evaluated at } \mu_y \text{ yields 1/ } \mu_y$
- * $\frac{\partial \left(\frac{X}{Y}\right)}{\partial Y} = -X/Y^2$, evaluated at μ_X and μ_Y yields, $\frac{-\mu_X}{\mu_Y^2}$
- * $Var\left(\frac{X}{Y}\right) = \frac{\sigma_x^2}{\mu_y^2} + \sigma_y^2 \frac{\mu_x^2}{\mu_y^4} = \frac{\mu_x^2}{\mu_y^2} \left[\frac{\sigma_x^2}{\mu_x^2} + \frac{\sigma_y^2}{\mu_y^2} \right]$

Euphydryas editha: example

- 1985, Genetics 110: 495
- Estimates of effective population size require an estimate of the variance in reproductive success $N_e = \frac{2(2N-1)}{\left(Vm/_2+3\right)}$ (assuming equal sex ratio, no pop growth, male variance =mean)
- * X_i number of eggs laid in the *ith* egg mass, with mean μ_{X_i} and variance $\sigma_{X_i}^2$.
- * Host plant desiccation -> $Y \begin{cases} 0 \ w. \ p. \ \delta \\ 1 \ w. \ p. \ 1 \delta \end{cases}$
- * Z_j is a Bernoulli random variable that represent the chance that the *jth* individual that did not dry out survives to become and adult w.p. λ .
- * The number of surviving larvae that become adults from egg mass-i is W_i .
- Find the mean and variance of W_i .

Conditional mean

- Lower case variables are realizations of the random variable.
- Given, Y=y and $X_i=x_i$, then the number of adults is $\sum_{j=1}^{yx_i} z_j = E[W_i|x_i, y, \sum z_j]$.
- * $E\left[\sum_{j=1}^{yx_i} Z_j | x_i, y\right] = yx_i\lambda$, since $\sum Z_j \sim B(x_i y, \lambda(1-\lambda)x_i y)$
- $* E[x_i Y \lambda | x_i] = x_i \cdot 0 \cdot \lambda \cdot \delta + x_i \cdot 1 \cdot \lambda \cdot (1 \delta) = x_i \lambda (1 \delta)$
- $E[W_i] = E[X_i\lambda(1-\delta)] = \mu_{X_i}\lambda(1-\delta)$

Conditional Variance

- Let $E[W_i] = \mu_{X_i} \lambda (1 \delta) = \widehat{W}$ $Var(\sum_{i=1}^{yx_i} z_i | x_i, y) = E[yx_i\lambda(1-\lambda)] + Var(yx_i\lambda)$ $= yx_i\lambda(1-\lambda) + E\{[yx_i\lambda - \widehat{w}]^2\}$ $E(Yx_i\lambda(1-\lambda)|x_i) + E\left[\left(Yx_i\lambda - \widehat{W}\right)^2|x_i\right]$ $= x_i \lambda (1 - \lambda)(1 - \delta) + \widehat{W}^2 \delta + (1 - \delta) E \left| \left(x_i \lambda - \widehat{W} \right)^2 \right|$ $= x_i \lambda (1 - \lambda)(1 - \delta) + \widehat{W}^2 \delta + (1 - \delta) E[\lambda^2 x_i^2 - 2\lambda x_i \widehat{W} + \widehat{W}^2]$ $\mu_{x}\lambda(1-\lambda)(1-\delta) + \widehat{W}^{2}\delta + (1-\delta)\left[\lambda^{2}\left(\mu_{x_{i}}^{2} + \sigma_{x_{i}}^{2}\right) - 2\lambda\mu_{x_{i}}\widehat{W} + \widehat{W}^{2}\right]$ $= \cdots algebra = \widehat{W} \left(1 - \lambda - \widehat{W} + \lambda \frac{\sigma_{x_i}^2}{\mu_{x_i}} + \lambda \mu_{x_i} \right)$
- Since this is for one clutch if the clutches are independent then we sum this quantity over all 1-4 clutches.
- The total variance could then range from 2.9 to 31. For the standard Wright-Fisher model this would be assumed to be 2.